Shape Reconstruction from Raw Point Clouds using Depth Carving
نویسندگان
چکیده
Shape reconstruction from raw point sets is a hot research topic. Point sets are increasingly available as primary input source, since low-cost acquisition methods are largely accessible nowadays, and these sets are more noisy than used to be. Standard reconstruction methods rely on normals or signed distance functions, and thus many methods aim at estimating these features. Human vision can however easily discern between the inside and the outside of a dense cloud even without the support of fancy measures. We propose, here, a perceptual method for estimating an indicator function for the shape, inspired from image-based methods. The resulting function nicely approximates the shape, is robust to noise, and can be used for direct isosurface extraction or as an input for other accurate reconstruction methods.
منابع مشابه
Object Modeling and Recognition from Sparse, Noisy Data via Voxel Depth Carving
In this work, we make the case for using volumetric information for shape reconstruction and recognition from noisy depth images for robotic manipulation. We provide an efficient algorithm, Voxel Depth Carving (a variant of Occupancy Grid Mapping) which accomplishes this goal. Real-world experiments with lasers, RGB-D cameras, and simulated sensors in both 2D and 3D verify the effectiveness of ...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملFast Sampling Plane Filtering, Polygon Construction and Merging from Depth Images
Recently, the availability of low cost depth cameras has provided 3D sensing capabilities for mobile robots in the form of dense 3D point clouds, usable for applications like 3D mapping and reconstruction, shape analysis, pose tracking and object recognition. For all the aforementioned applications, processing the raw 3D point cloud in real time and at full frame rates may be infeasible due to ...
متن کاملPCPNET: Learning Local Shape Properties from Raw Point Clouds
In this paper, we propose a deep-learning based approach for estimating local 3D shape properties in point clouds. In contrast to the majority of prior techniques that concentrate on global or mid-level attributes, e.g., for shape classification or semantic labeling, we suggest a patch-based learning method, in which a series of local patches at multiple scales around each point is encoded in a...
متن کاملDirect Shape Carving: Smooth 3D Points and Normals for Surface Reconstruction
This paper proposes a method for reconstructing a smooth and accurate 3D surface. Recent machine vision techniques can reconstruct accurate 3D points and normals of an object. The reconstructed point cloud is used for generating its 3D surface by surface reconstruction. The more accurate the point cloud, the more correct the surface becomes. For improving the surface, how to integrate existing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012